https://www.linkedin.com/feed/update/urn:li:activity:6548138571155542017 262.3 (NguenDuy Lien) The sequence (a_n) is defined by

$$a_0 = 2, a_{n+1} = 4a_n + \sqrt{15a_n^2 - 60}, \text{ for } n \in \mathbb{N}.$$

Find the general term a_n . Prove that $\frac{1}{5}(a_{2n}+8)$ can be represented

as the sum of squares of three consecutive integers for $n \ge 1$.

Solution by Arkady Alt, San Jose, California, USA.

First note that $2 \le a_n < a_{n+1}$ for any $n \in \mathbb{N} \cup \{0\}$ ($a_0 = 2$ and $a_{n+1} > 4a_n$).

Also note that
$$a_1 = 4a_0 + \sqrt{15a_0^2 - 60} = 8 + \sqrt{15 \cdot 2^2 - 60} = 8$$
.

Since
$$a_{n+1} = 4a_n + \sqrt{15a_n^2 - 60} \iff (a_{n+1} - 4a_n)^2 = 15a_n^2 - 60 \iff$$

$$a_{n+1}^2 - 8a_{n+1}a_n + a_n^2 = -60, \ \forall n \in \mathbb{N} \cup \{0\}$$
 then

$$a_{n+2}^2 - 8a_{n+2}a_{n+1} + a_{n+1}^2 - (a_{n+1}^2 - 8a_{n+1}a_n + a_n^2) = 0 \iff$$

$$(a_{n+2}-a_n)(a_{n+2}-8a_{n+1}+a_n)=0 \iff a_{n+2}-8a_{n+1}+a_n=0, n\in\mathbb{N}\cup\{0\}$$

and, therefore,
$$a_n = c_1 (4 + \sqrt{15})^n + c_2 (4 - \sqrt{15})^n$$
.

Initial conditions
$$a_0 = 2, a_1 = 8$$
 give us $c_1 = c_2 = 1$.

Thus,
$$a_n = (4 + \sqrt{15})^n + (4 - \sqrt{15})^n$$
, $n \in \mathbb{N} \cup \{0\}$.

We will prove that there is sequence of integer numbers (b_n) such that $\frac{1}{5}(a_{2n}+8)=$

$$(b_n-1)^2+b_n^2+(b_n+1)^2=3b_n^2+2\iff a_{2n}+8=15b_n^2+10\iff a_{2n}-2=15b_n^2.$$

Note that
$$a_{2n} - 2 = \left(4 + \sqrt{15}\right)^{2n} + \left(4 - \sqrt{15}\right)^{2n} - 2 = \left(\left(4 + \sqrt{15}\right)^n - \left(4 - \sqrt{15}\right)^n\right)^2$$
.

Let
$$b_n = \frac{\left(4 + \sqrt{15}\right)^n - \left(4 - \sqrt{15}\right)^n}{\sqrt{15}}, n \in \mathbb{N} \cup \{0\}.$$

Then $b_0 = 0, b_1 = 2, b_{n+1} - 8b_n + b_{n-1} = 0, n \in \mathbb{N}$ and, therefore, $a_{2n} - 2 = 15b_n^2$,

 $n \in \mathbb{N} \cup \{0\}$ where b_n is obviously integer for any $n \in \mathbb{N} \cup \{0\}$ (by Math Induction

using $b_0 = 0, b_1 = 2$ as the Base of MI and $b_{n+1} = 8b_n - b_{n-1}, n \in \mathbb{N}$ for the Step of MI).